

1845ИП10

Контроллер для оптико-электронных извещателей дыма

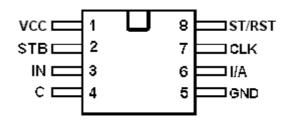
Микросхема 1845ИП10

Интегральная схема 1845ИП10 представляет собой специализированный контроллер для построения дымовых оптико-электронных извещателей. Микросхема 1845ИП10 является основным электронным компонентом в оптико-электронных извещателях дыма и используется совместно с инфракрасной дымовой камерой.

Встроенный фото-усилитель с переменным коэффициентом усиления позволяет подключать ИК фотодиод непосредственно к микросхеме.

ИС поставляется в корпусах DIP-8 и SOIC-8.

ИС предназначена для формирования сигналов опроса и контроля состояния датчика. Микросхема позволяет контролировать амплитуду и форму выходного сигнала фото-усилителя.


ОСОБЕННОСТИ

- ток потребления, мкА <4
- напряжение питания, В 6-9
- встроенный фото-усилитель
- встроенный генератор частоты
- встроенная схема сброса по питанию
- рабочая температура -30°С +60°С
- тип корпуса DIP-8, SOIC-8

РАСПОЛОЖЕНИЕ ВЫВОДОВ ИС 1845ИП10.

КРАТКОЕ ФУНКЦИОНАЛЬНОЕ ОПИСАНИЕ

Временные характеристики диаграммы работы микросхемы 1845ИП10 определяются частотой работы внутреннего генератора и могут устанавливаться с помощью величины резистора, подключенного между выводами **CLK** и **VCC** и конденсатора, подключенного между выводами **CLK** и **GND** микросхемы. (см. Рис.2).

Микросхема 1845ИП10 работает в двух основных режимах:

- дежурный режим;
- режим "тревога";

В дежурном режиме микросхема формирует импульсы опроса датчика на выводе **I/A** и контролирует выход фотоусилителя на внутреннем компараторе. В режим "тревога" микросхема 1845ИП10 переходит после появления дыма с плотностью, превышающей норму в течении 4 периодов работы встроенного генератора (~4сек.). При переходе в режим "тревога" микросхема переводит вывод **I/A** в активное состояние. Перевод микросхемы в дежурный режим из режима «тревога» может быть осуществлен двумя способами:

- снижением напряжения питания до 3,5В.
- установкой уровня нуля на выводе ST микросхемы.

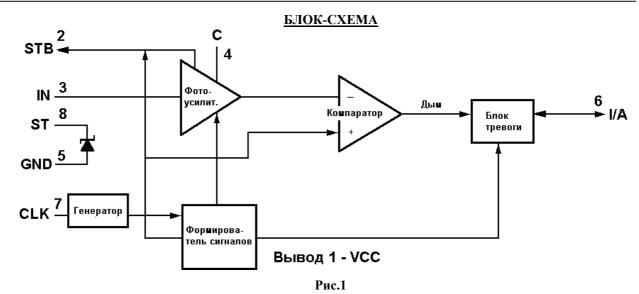


ТАБЛИЦА ВЫВОДОВ ИС 1845ИП10.

Номер вывода	Название вывода	Назначение			
1	VCC	Вход питания			
2	STB	Выход строба для формирования р.т. фото-усилителя			
3	IN	Вход фото-усилителя			
4	C	Вход регулировки фото-усилителя			
5	GND	Общий вывод			
6	I/A	Выход опроса датчика / Выход "тревога"			
7	CLK	Вход генератора			
8	ST/RST	Вход ограничения напряжения / Вход сброса / Выход контроля фото-усилителя			

НАЗНАЧЕНИЕ ВЫВОДОВ ИС 1845ИП10

Вывод VCC - напряжение питания.

Вывод **STB** - выход строба для формирования рабочей точки фото-усилителя. К этому выходу подключается резистивный делитель, определяющий порог срабатывания фото-усилителя.

Вывод **IN** - вход фото-усилителя подключается к аноду внешнего фотодиода. Фотодиод должен иметь малую емкость и минимальный теневой ток. Фотодиод должен быть зашунтирован нагрузочным резистором. Желательно минимизировать связь между выводом и анодом фотодиода на печатной плате.

Вывод C - вход регулировки фото-усилителя. Конденсатор, подключенный к этому выводу согласно (Рис.2) определяет коэффициент усиления фото-усилителя. Коэффициент усиления рассчитывается по формуле Ky = 1 + (C1/10), где C1 – емкость конденсатора C1 в $n\Phi$.

Вывод **GND** - общий вывод.

Вывод I/A - выход выполняет две функции. В дежурном режиме этот вывод формирует сигналы, которые поступают на базу внешнего NPN транзистора, который управляет работой инфракрасного светодиода для проверки дымовой камеры на наличие дыма. Длительность импульса на выводе I/A определяется величиной емкости конденсатора, подключенного к выводу CLK. При номинале 220nF длительность импульса составляет ~ 60 микросекунд. В режиме "тревога" на выводе I/A устанавливается постоянное напряжение высокого уровня для включения внешнего светодиода, реле и т.д.

Вывод **СLК** - вход внутреннего генератора частоты. Частота внутреннего генератора устанавливается величиной резистора, подключенного между выводами **СLК** и **VCC** и конденсатора, подключенного между выводами **CLK** и **GND** микросхемы. (Например: для формирования периода импульсов опроса датчика 1 сек. величина резистора должна составлять ~ 5,6мОм, а величина конденсатора ~ 220nF). Вывод **CLK** может быть использован для подключения внешнего генератора.

Вывод **ST/RST** - Вход ограничения напряжения (ограничивает напряжение на уровне ~ 7,5В при токе 10мкА.) В режиме тревога является входом сброса схемы в дежурный режим. Схема переходит в дежурный режим установкой уровня нуля. На выводе ST также можно наблюдать амплитуду и форму выходного сигнала фотоусилителя. (см. рис 3.) Порог срабатывания определяется разностью потенциалов в импульсе между выводом 2 (**STB**) и катодом фотодиода.

E-mail: **v@elcor.kiev.ua T....** +38-044-**442-93-02**

Вариант построения дымового оптико-электронного извещателя (24В, двухпроводн.) на основе ИС **1845ИП10**

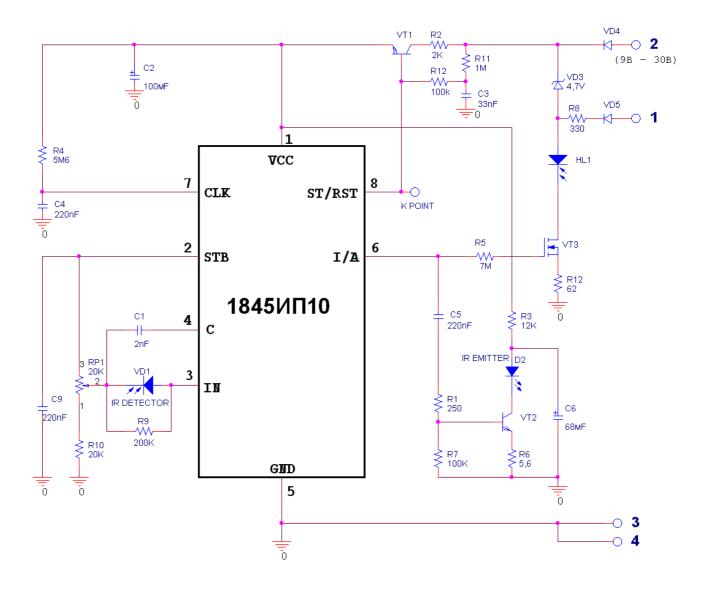


Рис.2

Временная диаграмма основных режимов работы микросхемы 1845ИП10

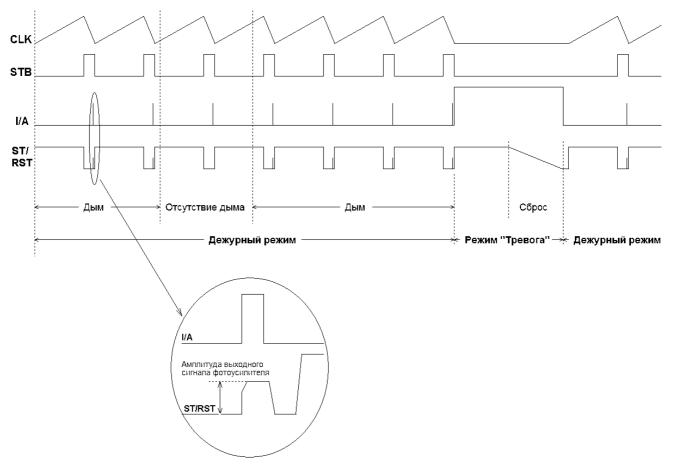


Рис. 3

Основные характеристики микросхемы 1845ИП10 (Вкл. согласно Рис.2: R4=5M6, C4=220nF, T=25 $^{\rm o}$ C)

Nº	Параметр	Условия	Мин.	Макс.	Ед.
1	Период сигнала CLK	дежурный режим	1,0	1,2	сек
2	Длительность сигнала I/A	дежурный режим	55	75	МКС
3	Длительность STB	дежурный режим	5,5	7,5	МС
	Длительность сигнала сброса для перевода микросхемы в дежурный режим из режима "тревога" (определяется величиной конденсатора СЗ)	Режим "тревога", C3 = 33nF	1,0	1,5	сек
5	Ток потребления по выводу VCC (Исключая базовый ток VT2)	дежурный режим		4	мкА
6	Выходное напряжение высокого уровня сигнала I/A (T=25°C)	дежурный режим, lout = 4mA	2,30	3,2	В
7		Режим "тревога", lout = 300mkA	VCC-1,7	VCC-1	В
8	Выходное напряжение высокого уровня сигнала STB (T=25°C)	lout = 100mkA, C9=200nF	3,8	4,7	В
9	Напряжение высокого уровня на выводе ST/RST (во время отстутствия сигнала STB)	lin= 2 - 20 mkA	6,7	8,5	В

E-mail: **v@elcor.kiev.ua** T.ф. +38-044-**442-93-02**

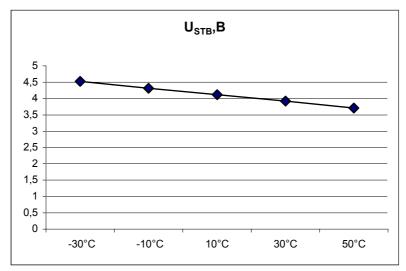


Рис.4 Типовая зависимость амплитуды импульса STB от температуры

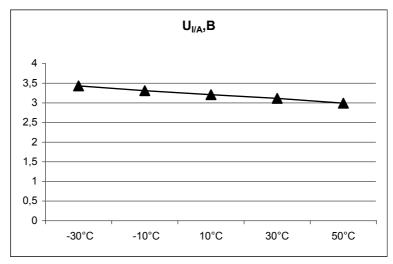


Рис. 5 Типовая зависимость амплитуды импульса І/А от температуры

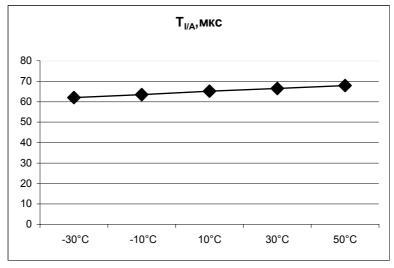


Рис.6 Типовая зависимость длительности импульса I/A от температуры

E-mail: **v@elcor.kiev.ua** T.ф. +38-044-**442-93-02**